The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
نویسندگان
چکیده
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5'-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5'-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.
منابع مشابه
Correction of the Caulobacter crescentus NA1000 Genome Annotation
Bacterial genome annotations are accumulating rapidly in the GenBank database and the use of automated annotation technologies to create these annotations has become the norm. However, these automated methods commonly result in a small, but significant percentage of genome annotation errors. To improve accuracy and reliability, we analyzed the Caulobacter crescentus NA1000 genome utilizing comp...
متن کاملComplete Genome Sequence of Caulobacter crescentus Siphophage Sansa
Caulobacter crescentus is a Gram-negative dimorphic model organism used to study cell differentiation. Siphophage Sansa is a newly isolated siphophage with an icosahedral capsid that infects C. crescentus. Sansa shares no sequence similarity to other phages deposited in GenBank. Here, we describe its genome sequence and general features.
متن کاملComplete Genome Sequence of Caulobacter crescentus Siphophage Seuss
Caulobacter crescentus is a water-dwelling bacterium known to have a dimorphic life cycle. Here, we announce the complete genome of Seuss, a C. crescentus icosahedral siphophage, and describe key features. Seuss is unique among phages deposited in GenBank, with genes encoding novel hypothetical proteins composing 45% of its genome.
متن کاملOmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations
Caulobacter crescentus is an oligotrophic bacterium that lives in dilute organic environments such as soil and freshwater. This bacterium represents an interesting model for cellular differentiation and regulation because daughter cells after division have different forms: one is motile while the other is non-motile and can adhere to surfaces. Interestingly, the known genome of C. crescentus do...
متن کاملWhole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus.
The bacterium Caulobacter crescentus and related stalk bacterial species are known for their distinctive ability to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Caulobacter crescentus is a model organism for studying cell cycle regulation with well-developed genetics. We have identified the pathways responding to heavy-metal toxicity in C. crescent...
متن کامل